11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


se.cs.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Spring
Prerequisites
None
Course Language
Course Type
Required
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course Discussion
Problem Solving
Application: Experiment / Laboratory / Workshop
Course Coordinator
Course Lecturer(s)
Assistant(s)
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • Understand the significance of the essential concepts of momentum and the conservation of momentum,
  • Learn the solution strategies for the problems arising in rotational dynamics,
  • Get acquainted with the concepts of rigid bodies, torque and angular momentum,
  • Apply the conservation of angular momentum in order to deal with more advanced problems of rotational dynamics,
  • Grasp the fundamental concepts in the following areas: thermodynamics, the kinetic theory and the ideal gas, and the basic laws of thermodynamics.
  • Learn how to establish an experiement, collect, analyze and interpret data
  • Improve their computational skills
  • Employ computer skills to visualize and analyze expermental data
Course Description

 



Course Category

Core Courses
X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Kinematics in One Dimension Chapter 2. Sections 18. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
2 Kinematics in Two Dimension; Vectors Chapter 3. Sections 110. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
3 Dynamics: Newton’s Laws of Motion Chapter 4. Sections 18. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
4 Further Applications of Newton’s Laws Chapter 5. Sections 14. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
5 Work and Energy Chapter 7. Sections 15. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
6 Conservation of Energy Chapter 8. Sections 16. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
7 Linear Momentum and Collisions Chapter 9. Sections 19. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
8 Rotational Motion about a Fixed Axis Chapter 10. Sections 111. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
9 General Rotation Chapter 11. Sections 18. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
10 Static Equilibrium; Elasticity and Fracture Chapter 12. Sections 18. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
11 Temperature, Thermal Expansion and the Ideal Gas Law Chapter 17. Sections 110. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
12 Kinetic Theory of Gases; Van der Waals Equation of State; Diffusion Chapter 18. Sections 17. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
13 Heat and the First Law of Thermodynamics: Specific Heat; Heat Transfer Chapter 19. Sections 110. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
14 Second Law of Thermodynamics; Heat Engines; Carnot Engine; Entropy Chapter 20. Sections 15. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
15 Statistical Interpretation of Entropy and the Second Law; Absolute Zero and the Third Law of Thermodynamics Chapter 20. Sections 610. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
16 Gravitation Chapter 6. Sections 19. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
Course Notes/Textbooks Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, ©2008, AddisonWesley, Published: 08/27/2008, ISBN10: 0136139221 | ISBN13: 9780136139225
Suggested Readings/Materials University Physics with Modern Physics with Mastering Physics™, 12/E, Young & Freedman©2008,  AddisonWesley, Published:03/23/2007,ISBN10: 080532187X, ISBN13: 9780805321876Physics for Scientists and Engineers: A Strategic Approach with Modern Physics and Mastering Physics™, 2/E, Knight, ©2008, AddisonWesley, Published:10/09/2007, ISBN10: 0321513339, ISBN13: 9780321513335

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
8
20
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterm
2
40
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
70
Weighting of End-of-Semester Activities on the Final Grade
30
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
2
Study Hours Out of Class
16
4
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterms
1
3
Final Exams
1
20
    Total
151

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 Be able to define problems in real life by identifying functional and nonfunctional requirements that the software is to execute
2 Be able to design and analyze software at component, subsystem, and software architecture level
3 Be able to develop software by coding, verifying, doing unit testing and debugging
4 Be able to verify software by testing its behaviour, execution conditions, and expected results
5 Be able to maintain software due to working environment changes, new user demands and the emergence of software errors that occur during operation
6 Be able to monitor and control changes in the software, the integration of software with other software systems, and plan to release software versions systematically
7 To have knowledge in the area of software requirements understanding, process planning, output specification, resource planning, risk management and quality planning
8 Be able to identify, evaluate, measure and manage changes in software development by applying software engineering processes
9 Be able to use various tools and methods to do the software requirements, design, development, testing and maintenance
10 To have knowledge of basic quality metrics, software life cycle processes, software quality, quality model characteristics, and be able to use them to develop, verify and test software
11 To have knowledge in other disciplines that have common boundaries with software engineering such as computer engineering, management, mathematics, project management, quality management, software ergonomics and systems engineering X
12 Be able to grasp software engineering culture and concept of ethics, and have the basic information of applying them in the software engineering
13

Be able to use a foreign language to follow related field publications and communicate with colleagues

X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010